1. BESARAN VEKTOR DAN BESARAN SKALAR
Besaran yang hanya memiliki nilai disebut besaran skalar contoh besaran massa, panjang, waktu masing-masing memiliki nilai saja yaitu misal 5 kg, 6 m, 7 menit.
Sedangkan besaran yang memiliki nilai dan arah disebut besaran vektor
contoh besaran kecepatan, gaya masing-masing 5 m/detik ke utara, 6
Newton ke timur. Besaran vektor dinotasikan dengan huruf di atasnya ada
anak panah atau huruf dicetak tebal sedangkan huruf tanpa cetak tebal
adalah nilai (besar) vektor. Lambang besaran vektor yaitu anak panah
dimana panjang ruas garis menunjukan nilai vektor dan anak panah
menunjukan arah vektor.
Gb1. Besaran vektor (a). notasi (b) lambang
Perhatikan Gb1 (b) di atas bagaimana Vektor F1 dan F2? Betul, arah sama tetapi panjang tidak sama berarti vektor F1 dan F2 searah dan beda nilai. Dua vektor dikatakan sama jika besar dan arah sama. Vektor dapat dipindah asal besar dan arah tidak berubah.
2. KOMPONEN VEKTOR
An1. Komponen vektor
V = Vx + Vy (vektor)
v2 = vx2 + vy2 (nilai vektor)
3. PENJUMLAHAN VEKTOR
Pada prinsipnya menjumlahkan dua vektor
atau lebih adalah menyambungkan vektor satu ke ujung vektor yang lain
maka jumlah vektor (resultan vektor) adalah tarik garis lurus dari
pangkal sampai ke ujung vektor yang disambung-sambungkan tersebut.
Menentukan nilai vektor adalah menentukan panjang ruas garis vektor
tersebut secara geometri dan trigomometri.
An2. Resultan dan komponen vektor
Penjumlahan dua vektor membentuk sudut tumpul (>90o)
4. Pengurangan Vektor
Pengurangan vektor adalah penjumlahan dengan vektor negarif. Vektor jika arahnya dibalik maka menjadi vektor negatif.
Teladan 3
Besar Vektor A=8,246 satuan dan vektor B=4 satuan membentuk sudut θ=104,03o seperti animasi ai atas. Tentukan nilai vektor A-B? Berarti sudut β=180o- θ =180-104,03=75,97o
5. Penjumlahan vektor cara penguraian
Menjumlahkan lebih dari dua vektor akan lebih mudah dengan menguraikan menjadi komponen penyusun vektor.
An3. Resultan dan uraian vektor
Vektor B dapat diuraikan menjadi vektor Bx = B Cos β dan By = B Sin β vektor C diuraikan menjadi Cx = C Cos α dan Cy = C Sin α sedang vektor A hanya Ax, Ay = 0. Atau menentukan panjang ruas garisnya, jika 1 skala pada animasi 3 bernilai 1 satuan akan di dapat:
Contoh soal dan Pembahasan :
Soal No. 1
Diberikan dua buah vektor gaya yang sama besar masing-masing vektor besarnya adalah 10 Newton seperti gambar berikut.
Diberikan dua buah vektor gaya yang sama besar masing-masing vektor besarnya adalah 10 Newton seperti gambar berikut.

Jika sudut yang terbentuk antara kedua vektor adalah 60°, tentukan nilai resultan kedua vektor!
Pembahasan
Resultan untuk dua buah vektor yang telah diketahui sudutnya
Resultan untuk dua buah vektor yang telah diketahui sudutnya
Soal No. 2
Dua buah vektor kecepatan P dan Q masing-masing besarnya 40 m/s dan 20 m/s membentuk sudut 60°.
Tentukan selisih kedua vektor tersebut!
Pembahasan
Menentukan selisih dua buah vektor yang diketahui sudutnya:
Soal No. 3
Dua buah vektor gaya masing – masing 8 N dan 4 N saling mengapit sudut 120°. Tentukan besar resultan kedua vektor tersebut!
Pembahasan
Data:
F1 = 8 N
F2 = 4 N
α = 120°
R = ........
Catatan rumus:
cos (180° − α) = − cos α
Sehingga untuk nilai cos 120°:
cos 120° = cos (180° − 60°) = − cos 60° = − 1/2
Soal No. 4
Perhatikan gambar berikut!

Jika satu kotak mewakili 10 Newton, tentukan resultan antara kedua vektor!
Pembahasan
Cari jumlah resultan pada sumbu x dan sumbu y, cukup dengan menghitung kotak dari masing-masing vektor, F1 adalah 30 ke kanan, 40 ke atas, sementara F2 adalah 50 ke kanan, 20 ke atas, kemudian masukkan rumus resultan:
Soal No. 5
Diberikan 3 buah vektor F1=10 N, F2 =25 N dan F3=15 N seperti gambar berikut.
Diberikan 3 buah vektor F1=10 N, F2 =25 N dan F3=15 N seperti gambar berikut.

Tentukan:
a. Resultan ketiga vektor
a. Resultan ketiga vektor
b. Arah resultan terhadap sumbu X
[Sin 37° = (3/5), Sin 53° = (4/5)]
[Cos 37° = (4/5), Cos 53° = (3/5)]
Pembahasan
a. Ikuti langkah-langkah berikut:
1. Uraikan semua vektor ke sumbu x dan sumbu y (kecuali vektor yang sudah lurus pada sumbu x atau y seperti F2). Lihat gambar di bawah!
2. Cari jumlah vektor pada sumbu x ( kanan +, kiri -)
3. Cari jumlah vektor pada sumbu y (atas +, bawah -)
4. Masukkan rumus resultan

Jumlah komponen vektor-vektor pada sumbu x dan y :
b. Mencari sudut yang terbentuk antara resultan vektor R dengan sumbu x
tan θ = ΣFy /ΣFx
tan θ = −7/−1 = 7
θ = arc. tan 7 = 81,87°
Thanks to PCP http://journalputrika.blogspot.com atas koreksinya :-)
Soal No. 6
Ditentukan 2 buah vektor F yang sama besarnya. Bila perbandingan antara besar jumlah dan besar selisih kedua vektor sama dengan √3, tentukan besar sudut yang dibentuk oleh kedua vektor! (Sumber Soal : SPMB)

Perbandingan jumlah dan selisihnya adalah √3 sehingga:
Kuadratkan ruas kiri dan kanan
Kali silang :
Soal No. 7
Sebuah perahu menyeberangi sungai yang lebarnya 180 m dan kecepatan airnya 4 m/s. Bila perahu diarahkan menyilang tegak lurus dengan kecepatan 3 m/s, tentukan panjang lintasan yang ditempuh perahu hingga sampai ke seberang sungai! (Sumber Soal : UMPTN)
Ditentukan 2 buah vektor F yang sama besarnya. Bila perbandingan antara besar jumlah dan besar selisih kedua vektor sama dengan √3, tentukan besar sudut yang dibentuk oleh kedua vektor! (Sumber Soal : SPMB)
Pembahasan
Jumlah dan selisih kedua vektor masing-masing adalah:
Perbandingan jumlah dan selisihnya adalah √3 sehingga:
Kuadratkan ruas kiri dan kanan
Kali silang :
Soal No. 7
Sebuah perahu menyeberangi sungai yang lebarnya 180 m dan kecepatan airnya 4 m/s. Bila perahu diarahkan menyilang tegak lurus dengan kecepatan 3 m/s, tentukan panjang lintasan yang ditempuh perahu hingga sampai ke seberang sungai! (Sumber Soal : UMPTN)

Pembahasan
Asumsikan bahwa perahu bergerak lurus beraturan
menempuh lintasan AD dan resultan kecepatan perahu dan air adalah 5 m/s
(gunakan aturan Phytagoras). Dengan membandingkan sisi-sisi segitiga ABC
dan ADE :
Tips
"Untuk dua buah vektor dengan besar yang sama dan membentuk sudut 120o maka resultan kedua vektor besarnya akan sama dengan besar salah satu vektor"
Berikut ilustrasinya:
Dua buah vektor dengan besar yang sama yaitu 10 N membentuk sudut 120o maka nilai resultan kedua vektor juga 10 N.
Berikut contoh soal diambil dari soal EBTANAS (UN tempo dulu, zaman kakak-kakak kita) tahun 2000.
Perhatikan gambar gaya-gaya di bawah ini!
Besar resultan ketiga gaya tersebut adalah....
A. 2,0 N
B. 2 √3 N
C. 3,0 N
D. 3 √3 N
E. 4√3 N
Pada soal di atas 2 buah vektor (gaya) 3 N membentuk sudut 120o,
sehingga resultan kedua gaya juga 3 N. Resultan kedua gaya ini akan
segaris dengan gaya 6 N, namun berlawanan arah. Sehingga dengan mudah
soal ini bisa dijawab resultan ketiga gaya adalah 6 N dikurangi 3 N
hasilnya adalah 3 N.
Soal No. 8
Diberikan 3 buah vektor :
a = 2i + 3j satuan
b = 4i + 5j satuan
c = 6i + 7j satuan
Tentukan besar resultan ketiga vektor, dan kemiringan sudut antara resultan dan sumbu X

Soal No. 8
Diberikan 3 buah vektor :
a = 2i + 3j satuan
b = 4i + 5j satuan
c = 6i + 7j satuan
Tentukan besar resultan ketiga vektor, dan kemiringan sudut antara resultan dan sumbu X
Data:
Untuk lebih jelas berikut ilustrasinya:

12 pada sumbu x
15 pada sumbu y
Arahnya adalah sudut θ yang bisa dicari dari sin θ, cos θ maupun tan θ. Jika dicari dari tan θ maka yang dibandingkan nilai pada sumbu y dengan nilai pada sumbu x. Jika dicari dari sin θ yang dibandingkan nilai pada sumbu y dengan nilai resultan R, jika digunakan cos θ bandingkan nilai pada sumbu x dengan nilai resultan R. Soal No. 9
Diberikan 3 buah vektor a, b, c seperti gambar di bawah.

Dengan metode poligon tunjukkan :
(i) d = a + b + c
(ii) d = a + b − c
(iii) d = a − b + c
(i) d = a + b + c

(ii) d = a + b − c

(iii) d = a − b + c

Soal No. 10
Diberikan dua buah vektor masing-masing vektor dan besarnya adalah A = 8 satuan, B = 10 satuan. Kedua vektor ini membentuk sudut 37°. Tentukan hasil dari:
a) A⋅ B
b) A × B
Pembahasan
a) A⋅ B adalah perkalian titik (dot) antara vektor A dan vektor B
Untuk perkalian titik berlaku
A⋅ B = A B cos θ
Sehingga
A⋅ B = A B cos 37° = (8)(10)(0,8) = 64 satuan
b) A × B adalah perkalian silang (cross) vektor A dan vektor B
Untuk perkalian silang berlaku
A × B = A B sin θ
Sehingga
A × B = A B sin 37° = (8)(10)(0,6) = 48 satuan
Soal No. 11Sebuah gaya F = (2i + 3j) N melakukan usaha dengan titik tangkapnya berpindah menurut r = (4i + aj) m dan vektor i dan j berturut-turut adalah vektor satuan yang searah dengan sumbu x dan sumbu y pada koordinat kartesian. Bila usaha itu bernilai 26 J, maka nilai a sama dengan...
A. 5
B. 6
C. 7
D. 8
E. 12
Sumber: Soal UMPTN Tahun 1991
Pembahasan
Soal ini adalah soal penerapan perkalian titik (dot product ) antara vektor gaya F dan vektor perpindahan r dengan kedua vektor dalam bentuk i dan j atau vektor satuan. Besaran yang dihasilkan nantinya adalah skalar (usaha termasuk besaran skalar, hanya memiliki besar, tanpa arah). Usaha dilambangkan dengan W dari kata work.
W = F ⋅ r
26 = (2i + 3j)⋅ (4i + aj)
Cara perkalian titik dua vektor dalam bentuk i,j adalah yang i kalikan i, yang j kalikan j, hingga seperti berikut
26 = 8 + 3a
3a = 26 − 8
a = 18/3 = 6
i dan j nya jadi hilang karena i kali i atau j kali j hasilnya adalah satu.
Bagaimana cara perkalian silang dua vektor dalam bentuk i dan j ? ntar kita tambahkan,...IA
Soal No. 12
Diberikan dua buah vektor masing-masing:
A = 4i + 3j − 2k
B = 7i + 2j + 5k
Tentukan hasil dari A × B
Pembahasan
Perkalian silang, A × B
Cara pertama:
Misal :
A = (Ax i + Ay j + Az k) dan B = (Bx i + By j + Bz k)
maka :
↑
Rumus Perkalian Silang Dua Vektor (cross product ) dalam i, j, k
Data :
A = 4i + 3j − 2k
B = 7i + 2j + 5k
maka
A × B = (Ay Bz − Az By) i + (Az Bx − Ax Bz) j + (Ax By − Ay Bx) k
A × B = [(3)(5) − (−2)(2)] i + [(−2)(7) − (4)(5)]j + [(4)(2) − (3)(7)] k
A × B = (15 + 4)i + (−14 − 20)j + (8 − 21)k
A × B = 19 i −34 j − 13k
Lumayan repot kalau mau dihafal rumus perkalian di atas, alternatifnya dengan cara yang kedua,
Cara Kedua:
A = 4i + 3j − 2k
B = 7i + 2j + 5k
Susun dua vektor di atas hingga seperti bentuk berikut:

Untuk mempermudah perkalian, tambahkan dua kolom di sebelah kanan susunan yang telah dibuat tadi hingga seperti berikut:

Beri tanda plus dan minus, ikuti contoh berikut:

Kalikan menyilang ke bawah terlebih dahulu dengan memperhatikan tanda plus minus yang telah dibuat, lanjutkan dengan menyilang ke atas,
A × B = (3)(5) i + (−2)(7) j + (4)(2)k − (7)(3)k − (2)(−2) i − (5)(4) j
A × B = 15 i −14 j + 8 k − 21k + 4 i − 20j
A × B = (15 + 4) i + (− 14 − 20) j + (8 − 21) k
A × B = 19 i − 34 j − 13 k
12 pada sumbu x
15 pada sumbu y
Arahnya adalah sudut θ yang bisa dicari dari sin θ, cos θ maupun tan θ. Jika dicari dari tan θ maka yang dibandingkan nilai pada sumbu y dengan nilai pada sumbu x. Jika dicari dari sin θ yang dibandingkan nilai pada sumbu y dengan nilai resultan R, jika digunakan cos θ bandingkan nilai pada sumbu x dengan nilai resultan R. Soal No. 9
Diberikan 3 buah vektor a, b, c seperti gambar di bawah.
Dengan metode poligon tunjukkan :
(i) d = a + b + c
(ii) d = a + b − c
(iii) d = a − b + c
Pembahasan
Dengan metode poligon :(i) d = a + b + c
(ii) d = a + b − c
(iii) d = a − b + c
Soal No. 10
Diberikan dua buah vektor masing-masing vektor dan besarnya adalah A = 8 satuan, B = 10 satuan. Kedua vektor ini membentuk sudut 37°. Tentukan hasil dari:
a) A⋅ B
b) A × B
Pembahasan
a) A⋅ B adalah perkalian titik (dot) antara vektor A dan vektor B
Untuk perkalian titik berlaku
A⋅ B = A B cos θ
Sehingga
A⋅ B = A B cos 37° = (8)(10)(0,8) = 64 satuan
b) A × B adalah perkalian silang (cross) vektor A dan vektor B
Untuk perkalian silang berlaku
A × B = A B sin θ
Sehingga
A × B = A B sin 37° = (8)(10)(0,6) = 48 satuan
Soal No. 11Sebuah gaya F = (2i + 3j) N melakukan usaha dengan titik tangkapnya berpindah menurut r = (4i + aj) m dan vektor i dan j berturut-turut adalah vektor satuan yang searah dengan sumbu x dan sumbu y pada koordinat kartesian. Bila usaha itu bernilai 26 J, maka nilai a sama dengan...
A. 5
B. 6
C. 7
D. 8
E. 12
Sumber: Soal UMPTN Tahun 1991
Pembahasan
Soal ini adalah soal penerapan perkalian titik (dot product ) antara vektor gaya F dan vektor perpindahan r dengan kedua vektor dalam bentuk i dan j atau vektor satuan. Besaran yang dihasilkan nantinya adalah skalar (usaha termasuk besaran skalar, hanya memiliki besar, tanpa arah). Usaha dilambangkan dengan W dari kata work.
W = F ⋅ r
26 = (2i + 3j)⋅ (4i + aj)
Cara perkalian titik dua vektor dalam bentuk i,j adalah yang i kalikan i, yang j kalikan j, hingga seperti berikut
26 = 8 + 3a
3a = 26 − 8
a = 18/3 = 6
i dan j nya jadi hilang karena i kali i atau j kali j hasilnya adalah satu.
Bagaimana cara perkalian silang dua vektor dalam bentuk i dan j ? ntar kita tambahkan,...IA
Soal No. 12
Diberikan dua buah vektor masing-masing:
A = 4i + 3j − 2k
B = 7i + 2j + 5k
Tentukan hasil dari A × B
Pembahasan
Perkalian silang, A × B
Cara pertama:
Misal :
A = (Ax i + Ay j + Az k) dan B = (Bx i + By j + Bz k)
maka :
| A × B = (Ay Bz − Az By) i + (Az Bx − Ax Bz) j + (Ax By − Ay Bx) k |
Rumus Perkalian Silang Dua Vektor (cross product ) dalam i, j, k
Data :
A = 4i + 3j − 2k
B = 7i + 2j + 5k
| Ax = 4 Ay = 3 Az = − 2 |
Bx = 7 By = 2 Bz = 5 |
A × B = (Ay Bz − Az By) i + (Az Bx − Ax Bz) j + (Ax By − Ay Bx) k
A × B = [(3)(5) − (−2)(2)] i + [(−2)(7) − (4)(5)]j + [(4)(2) − (3)(7)] k
A × B = (15 + 4)i + (−14 − 20)j + (8 − 21)k
A × B = 19 i −34 j − 13k
Lumayan repot kalau mau dihafal rumus perkalian di atas, alternatifnya dengan cara yang kedua,
Cara Kedua:
A = 4i + 3j − 2k
B = 7i + 2j + 5k
Susun dua vektor di atas hingga seperti bentuk berikut:
Untuk mempermudah perkalian, tambahkan dua kolom di sebelah kanan susunan yang telah dibuat tadi hingga seperti berikut:
Beri tanda plus dan minus, ikuti contoh berikut:
Kalikan menyilang ke bawah terlebih dahulu dengan memperhatikan tanda plus minus yang telah dibuat, lanjutkan dengan menyilang ke atas,
A × B = (3)(5) i + (−2)(7) j + (4)(2)k − (7)(3)k − (2)(−2) i − (5)(4) j
A × B = 15 i −14 j + 8 k − 21k + 4 i − 20j
A × B = (15 + 4) i + (− 14 − 20) j + (8 − 21) k
A × B = 19 i − 34 j − 13 k
Read more: http://fisikastudycenter.com/fisika-x-sma/5-vektor#ixzz2lVjeoXrZ




